УДК 512.542.6

ЗАМЕЧАНИЕ О Ж-ЛОКАЛЬНЫХ ФОРМАЦИЯХ

Л.А. Шеметков

Гомельский государственный университет им. Ф. Скорины, Гомель

A NOTE ON X-LOCAL FORMATIONS

L.A. Shemetkov

F. Scorina Gomel State University, Gomel

Установлено, что всякая \mathfrak{X} -локальная (в смысле Фёрстера) формация конечных групп является ω -композиционной формацией, где $\omega = \pi$ (\mathfrak{X}).

Ключевые слова: конечная группа, формация.

It is proved that every \mathfrak{X} -local (by Förster) formation of finite groups is an ω -composition formation, where $\omega = \pi(\mathfrak{X})$.

Keywords: finite group, formation.

AMS 2000 Mathematics Subject Classification: 20D10.

All groups considered are finite. We use standard notations (see [1]). The characteristic char(\mathfrak{X}) of a group class \mathfrak{X} is the set of primes p such that \mathfrak{X} contains a group of order p; π (\mathfrak{H}) is the set of all prime divisors of groups in \mathfrak{H} . A chief factor H/Kis called a chief \mathfrak{H} -factor if $H/K \in \mathfrak{H}$. We denote by E5 the class of groups all composition factors of which belong to §. We denote by § the class of all simple (abelian and non-abelian) groups. If $\mathfrak{X} \subseteq \mathfrak{J}$, then $\mathfrak{X}' = \mathfrak{J} \setminus \mathfrak{X}$, and \mathfrak{X}^+ is the class of abelian groups in \mathfrak{X} . We denote by $\mathcal{K}(G)$ the class of simple groups isomorphic to composition factors of a group G. By $C^A(G)$ we denote the intersection of all centralizers of all chief factors H/K of the group Gsuch that $A \in \mathcal{K}(H/K)$ $(C^A(G) = G \text{ if } G \text{ does }$ not contain chief factors of this type).

The concept of \mathfrak{X} -local formation was introduced by P. Förster (see [2], [1, p. 374], [3, Definition 3.1.1], [4, Definition 1.3]).

Definition 1. Let \mathfrak{X} be a class of simple groups such that $char(\mathfrak{X}) = \pi(\mathfrak{X})$. Consider a function

$$f: \pi(\mathfrak{X}) \cup \mathfrak{X}' \to \{\text{formations}\},\$$

which we call an **X-formation function**; we assume that f takes equal values at isomorphic groups. Let $LF_{\mathfrak{X}}(f)$ be the class of groups G satisfying the following conditions:

1) if H / K is a chief $E\mathfrak{X}$ -factor of G, then $G/C_G(H/K)$ belongs to f(p) for each p in π (H/K);

2) if G/L is monolithic and $Soc(G/L) \in E\mathfrak{X}'$, then $G/L \in f(E)$, where $E \in \mathcal{K}(Soc(G/L))$. The class $LF_{\mathfrak{X}}(f)$ is a formation; it is called an **X-local** formation.

Lemma 1 (see [4, Lemma 2.1, Lemma 4.4]). Let \mathfrak{X} be a class of simple groups such that $\operatorname{char}(\mathfrak{X}) = \pi(\mathfrak{X})$. Set $\mathfrak{L} = \mathfrak{X}^+$. Let f be an \mathfrak{X} -formation function and $\mathfrak{F} = LF_{\mathfrak{X}}(f)$. Then $\mathfrak{F} = LF_{\mathfrak{L}}(h)$, where h is an \mathfrak{L} -formation function such that $h(p) = f(p) \cap \mathfrak{F}$ for every p in $\pi(\mathfrak{X})$, and $h(E) = \mathfrak{F}$ for every E in \mathfrak{L}' .

Lemma 2 (see [4, Lemma 3.1]). Let \mathfrak{X} be a class of simple groups such that $\operatorname{char}(\mathfrak{X}) = \pi(\mathfrak{X})$. Let f be an \mathfrak{X} -formation function and $\mathfrak{F} = LF_{\mathfrak{X}}(f)$. Let M be a minimal normal subgroup of a group G such that $G / M \in \mathfrak{F}$, $M \in E\mathfrak{X}$ and M is f-central in G, i.e., $G / C_G(M) \in f(p)$ for each p in $\pi(M)$. Then $G \in \mathfrak{F}$.

The concept of \mathfrak{L} -composition formation was proposed in [5].

Definition 2. Let $\mathfrak L$ be an arbitrary non-empty class of simple groups. Then any function f of the form $f: \mathfrak L \cup \{\mathfrak L'\} \to \{\text{formations}\}\$ taking equal values on the isomorphic groups is called an $\mathfrak L$ -composition satellite. If A is an $\mathfrak L$ -group of prime order p, we write f(p) instead of f(A). For any $\mathfrak L$ -composition satellite f, we denote by $CF_{\mathfrak L}(f)$ the class of groups G satisfying the following conditions:

1) $G / G_{E_{\mathfrak{L}}} \in f(\mathfrak{L}')$, where $G_{E_{\mathfrak{L}}}$ is the $E_{\mathfrak{L}}$ -radical of G;

2) $G/C^A(G) \in f(A)$ for every $A \in \mathcal{K}(G) \cap \mathfrak{L}$. The class $CF_{\mathfrak{L}}(f)$ is a formation; it is called an \mathfrak{L} -composition formation. If $\mathfrak{L} = \mathfrak{L}^+$ and $\omega = \pi(\mathfrak{L})$, the class $CF_{\mathfrak{L}}(f)$ is called an ω -composition formation.

© Shemetkov L.A., 2010 61

Theorem. Let \mathfrak{X} be a non-empty class of simple groups such that $\omega = \operatorname{char}(\mathfrak{X}) = \pi(\mathfrak{X})$. Then every \mathfrak{X} -local formation is an ω -composition formation.

Proof. Let $\mathfrak{F} = LF_{\mathfrak{X}}$ (f). Set $\mathfrak{L} = \mathfrak{X}^+$. By Lemma 1, $\mathfrak{F} = LF_{\mathfrak{L}}(h)$, where h is an \mathfrak{L} -formation function such that $h(p) = f(p) \cap \mathfrak{F}$ for every p in $\pi(\mathfrak{L}) = \omega$, and $h(E) = \mathfrak{F}$ for every E in \mathfrak{L}' . Now we consider an \mathfrak{L} -composition formation $\mathfrak{D} = CF_{\mathfrak{L}}(d)$, where d is an \mathfrak{L} -composition satellite such that d(p) = h(p) for every p in ω , and $d(\mathfrak{L}') = \mathfrak{F}$. We prove that $\mathfrak{F} = \mathfrak{D}$.

If $G \in \mathfrak{F}$, then $G / G_{\mathbb{E}\mathfrak{T}} \in \mathfrak{F} = d(\mathfrak{L}')$ and for every chief $(\mathcal{K}(G) \cap \mathfrak{L})$ -factor H / K of G we have that $G/C_G(H/K)$ belongs to d(p) = h(p) where p in π (H/K). Thus, G belongs to \mathfrak{D} . So, $\mathfrak{F} \subseteq \mathfrak{D}$.

Let G be the group of the least order in $\mathfrak{D}\setminus \mathfrak{F}$. Then $L=G^{\mathfrak{F}}$ is the socle of G. If $G_{\mathbb{E}\mathfrak{F}}\neq 1$, then L belongs to $\mathbb{E}\mathfrak{F}$, and by Lemma 2 we have $G\in \mathfrak{F}$. Assume that $G_{\mathbb{E}\mathfrak{F}}=1$. Then, according to Definition 2, G belongs to $f(\mathfrak{F}')=\mathfrak{F}$.

The theorem is proved.

Remark. In [5] it was proved that every \mathfrak{L} -composition formation \mathfrak{F} is a p-composition formation for any p in π (\mathfrak{L}^+), so \mathfrak{F} is \mathfrak{L}^+ -local (see also [3, p. 152]).

REFERENCES

- 1. *Doerk, K.* Finite soluble groups / K. Doerk, T. Hawkes. Berlin–New York : Walter de Gruyter, 1992.
- 2. Förster, P. Projektive Klassen endlicher Gruppen. IIa. Gesättigte Formationen: Ein allgemeiner Satz von Gaschütz-Lubeseder-Baer-Typ / P. Förster // Publ. Sec. Mat. Univ. Autònoma Barcelona. 1985. Vol. 29 (2–3). P. 39–76.
- 3. *Ballester-Bolinches*, *A.* Classes of finite groups / A. Ballester-Bolinches, L.M. Ezquerro. Dordrecht: Springer, 2006.
- 4. *Ballester-Bolinches, A.* On partially saturated formations of finite groups / A. Ballester-Bolinches, C. Calvo, L.A. Shemetkov // Sbornik: Mathematics. 2007. Vol. 198:6. P.757–775. Translated from Matem. Sbornik. 2007. Vol. 198:6. P. 3–24 (in Russian).
- 5. *Shemetkov, L.A.* Multiply \(\mathbb{L}\)-composition formations of finite groups / L.A. Shemetkov, A.N. Skiba // Ukrainian Math. J. 2000. Vol. 52, № 6. P. 898–912. Translated from Ukr. Matem. Zhurnal. 2000. Vol. 52, № 6. P. 783–797 (in Russian).

Поступила в редакцию 21.11.10.